Unified Gated Flip-Flops for Reducing the Clocking Power in Register Circuits

Takumi Okuhira (Kyushu University), Tohru Ishihara (Kyoto University)

Background and motivation of our study

- Large amount of power is dissipated in register circuits
 - Around 40% of the total power in a microprocessor
- Clocking power is dominant in the register circuits
 - More than 80% of the power is due to clock signal transition

Previous Work

- Gated flip-flop
 - Clock supply is stopped if data is not updated
- Downside of the gated flip-flop
 - Large delay, area and power overheads

Our Approach

- Unify Multiple Gated FFs
 - Reduces internal clocking power
 - Reduces area overhead in gating circuits

Test Chip Implementation

Evaluation using MPU

- Target Processor
 - Media embedded processor developed by Toshiba
 - RISC type processor with five pipelines
- Comparison
 - CLK Gating: conventional clock gating is applied
 - CONV GFF: conventional gated FFs [4] are used
 - UGFF: unified gated FFs (i.e., ours) are used

Power Estimation Results

- The power consumption can be reduced by 25% on average and by 33% at the best case